Condensed Data
This is a demonstration how to read the Condensed Data programmatically via API.
First we obtain the template and data from the status_info_data_get and status_info_schema_get RPCs method.
👉 All calls to the status_info_data_get always return a result array for each submitted filter. Each result array contains the individual data arrays.
Example
import json
import requests
import sys
target = "https://ripex2a.racom.eu/cgi-bin/"
token = "<auth_token_string>"
for method in ['status_info_data_get', 'status_info_schema_get']:
res = requests.post(
f"{target}/rpc.cgi",
data=json.dumps({
'method': method,
'params': {
'filter': {
'types': ['hash_filesystem'] } } }),
headers={
'Content-Type': 'application/json',
'apikey': token})
if res.status_code != 200:
print('Error: HTTP status code:', res.status_code)
sys.exit(42) #error
print(f'"{method}" RPC response:')
print(json.dumps(res.json(), indent=2))
print('')
This should show the result JSON data:
status_info_data_get RPC response:
{
"result": {
"hash_filesystem": [
[
"32c73f0ce9d6b437cb666fb72d431c671b3bb124bb97d5eee8ca739b49eb08fa"
]
]
},
"device": {
"tstamp": 1741858385
}
}
status_info_schema_get RPC response:
{
"result": {
"hash_filesystem": {
"hash": ".0"
}
}
}
Now we can use the algorithm to the Condensed Data reconstruction algorithm:
- We can see that the response from status_info_schema_get
states that data cdid
for the
hash
attribute ofhash_filesystem
is".0"
. This indicates that the value is the first element of the data array. - The response from status_info_data_get
shows that for the
hash_filesystem
filter we received a result array containing one data array. -
Now for each data array we can extract the value pointed to by the cdid of the parameter
hash
.The result JSON of this status call is thus: